DYNAMIC METHOD OF SIMULATION OF THE USED BATTLE RESOURCES TO PREVENT AMPHIBIOUS LANDINGS BASED ON MARKOV CHAINS

Authors

DOI:

https://doi.org/10.32782/msd/2023.1.9

Keywords:

simulation model, discrete Markov chain, artillery gun, marine landing.

Abstract

A method and a simulation model for calculating the volume of shells and used artillery pieces during the time necessary to stop the landing of amphibious assault forces is proposed. The simulation model contains. The law of distribution of projectiles. Model of hitting a rectangle of a given shape. The model of the probability of projectiles hitting the target is not less than a given number. Model of movement of types of ships without changing the course. The dynamic method for modelling the use of combat resources to counter an amphibious assault is based on discrete Markov chains. The operational-tactical formulation of the problem contains information that allows using the Markov chain. The definition of the considered system is formulated. The possible states of the system are determined. The step of the process and the time points of the steps are found. Possible transitions of the system from state to state in one step are developed. The conditions for the initial state of the system are accepted. In the problem that has been solved, the system is a ship of the same type with its own properties, which has the goal of reaching the coastline. Conditions accepted. A ship that receives a certain number of hits in the future is not considered. Artillery guns with their own properties that fire at enemy ships in order to prevent ships from reaching the coastline have no restrictions on the number of shells. The conditions for using the model and method are determined, the amount of combat resources to stop the landing is obtained. To increase the likelihood of stopping the landing operation, it is assumed. On the one hand, it is necessary to increase the rate of fire of artillery pieces, significantly improve the quality of firing, which will increase the probability of hitting in conditions of a limited number of shells. On the other hand, an increase in the number of artillery pieces allows you to start destroying enemy ships at shorter distances, which will increase the chance of hitting and reduce the amount of shells used.

References

Algorithmic Game Theory / eds. : N. Nisan, T. Roughgarden, E. Tardos, V.V. Vazirani. New York : Cambridge University Press, 2009. 776 p. URL: https://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf.

Новиков О.М., Новиков Д.О. Методологія. Синтег, 2007. 668 с.

Lanchester F.W. Aircraft in Warfare: the Dawn of the Fourth Arm. London : Constable and Co, 1916. 243 p. URL: https://ia802608.us.archive.org/9/items/aircraftinwarfar00lancrich/aircraftinwarfar00lancrich.pdf.

Dupuy T.N. Understanding War: History and Theory of Combat. 2nd ed. Hauppauge : Nova Publishers, 1998. 312 p.

Dunnigan J.F. The Complete Wargames Handbook: How to Play, Design, and Find Them. New York : Quill, 1992. 333 p.

Devising a method for improving the efficiency of artillery shooting based on the Markov model / V.O. Boltenkov, O.I. Brunetkin, Ye.V. Dobrynin, O.B. Maksymova, V.V. Kuzmenko, P.S. Gultsov, V.E. Demydenko, O.V. Soloviova. Eastern-European Journal of Enterprise Technologies. 2021. Vol 6. № 3(114). P. 6–17. DOI: https:// doi.org/10.15587/1729-4061.2021.245854.

Алексєєв О.Г., Анісімов В.Г., Анісімов Є.Г. Марківські моделі бою : навчальний посібник. 1985. С. 8.

Вентцель Є.С. Теорія ймовірностей : підручник для вузів. 6-те вид., стереотип. Вища школа, 1999. 576 c.

Математичні моделі бойових дій / П.М. Ткаченко та ін. 1969. 240 с.

Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York, 1960.

Таблиці стрільби для рівнинних і гірських умов 152-мм самохідної гармати 2С5 і 152-мм причіпної гармати 2А36, ТС РГ № 273. Осколково-фугасний снаряд ОФ29 : навчальний посібник. Львів : Національна академія сухопутних військ імені гетьмана Петра Сагайдачного, 2017. 207 с.

Published

2023-06-05

How to Cite

Максимов, М. В., Добринін, Є. В., Максимова, О. Б., Акініна, Т. Л., & Данилов, Ф. А. (2023). DYNAMIC METHOD OF SIMULATION OF THE USED BATTLE RESOURCES TO PREVENT AMPHIBIOUS LANDINGS BASED ON MARKOV CHAINS. Maritime Security and Defense, (1), 69-77. https://doi.org/10.32782/msd/2023.1.9