SIMULATION OF THE PROCESS OF COMBAT USE OF WEAPONS BY SHIPS (BOATS) OF THE NAVI OF THE ARMED FORCES OF UKRAINE AT THE STAGE OF MAKING A TACTICAL DECISION TO CONDUCT A NAVAL BATTLE
DOI:
https://doi.org/10.32782/msd/2024.1/09Keywords:
battle, ship mathematical model, efficiency criterion, operations research method, navalAbstract
The article discusses the problem of assessing the effectiveness of making a tactical decision on the conduct of a naval battle. The study of mathematical models based on the method of operations research is presented, the criteria of efficiency and the stages of their construction are described. The essence of mathematical modeling of naval combat is defined. A method of constructing a mathematical model of the process of combat use of weapons by ships (boats) of combat use of ship weapons is proposed. A model for determining the optimal number of forces and means (order of forces) for the purpose of destroying the enemy with a certain efficiency, taking into account his counteraction, as well as a model for determining the necessary line for detecting a naval enemy in order to destroy it at the maximum distance within the tactical and technical characteristics of its means of destruction, has been formed. To consider the stages of mathematical modeling of the process and their content: statement of the problem, i.e. making a decision on the need for modeling and its purpose; building a mathematical model; study of the system on the model, forecasting and control of the original based on the results of these studies. The sequence of constructing a mathematical model and the types of work that are performed in the construction of a mathematical model are considered: assessment of the influence of elements in different solutions; grouping interrelated elements in order to simplify the model; determination of the nature of the influence of elements on the system (constant or variable); assigning symbols to each element and compiling an equation. For variable elements, sub-elements of the system are set that affect their majesty; The construction of a mathematical model, that is, the study of a phenomenon with the help of a mathematical model, can be divided into four stages: the stage of meaningful description; the stage of formalization of the description; the stage of final construction of the model (identification of parameters and verification of the adequacy of the model); Stage of revision and improvement of the model based on the results of generalization of empirically accumulated data. To consider the main factors that need to be taken into account when modulating the training and conduct of naval combat and their content: assessment of the naval enemy, combat capabilities of ships, tactical characteristics of the combat area, climatic conditions, estimated time for preparation for combat. To consider the stages of modeling the preparation and conduct of naval combat and their content. The consideration of the combat stability of ships (boats) of the Navy of the Armed Forces of Ukraine when modeling the process of combat use of weapons at the stage of making a tactical decision on the conduct of sea combat is considered.
References
Стеценко І.В. Моделювання систем : навчальний посібник. Черкаси : ЧДТУ, 2010. 399 с.
Томашевський В.М. Моделювання систем : навчальний посібник. Київ : Видавнича група BHV, 2005. 352 с.
Вашків П.Г., Пастер П.І., Сторожук В.П., Ткач Є.І. Теорія статистики : навчальний посібник. Київ : Либідь, 2001. 320 с.
Тимченко А.А. Основи системного проектування та системного аналізу складних об’єктів : підручник. Київ : Либідь, 2000. 270 с.
Тимченко А.А. Основи системного підходу та системного налізу об’єктів нової техніки : навчальний посібник. Київ : Либідь, 2004. 288 с.
Ямпольський Л.С., Лавров О.А. Штучний інтелект у плануванні та управлінні виробництвом : підручник. Київ : Вища школа, 1995. 254 с.
Єрмошин М.О., Федай В.М. Боротьба в повітрі : монографія. Харків : ХВУ, 2004. 381 с.
Ємельянов Л.А. Тактика Військово-Морського флоту : підручник. Київ : Військове видавництво, 1985. 132 с.